On Recovery of Sparse Signals via ℓ1 Minimization

نویسندگان

  • T. Tony Cai
  • Guangwu Xu
  • Jun Zhang
چکیده

This paper considers constrained minimization methods in a unified framework for the recovery of high-dimensional sparse signals in three settings: noiseless, bounded error, and Gaussian noise. Both minimization with an constraint (Dantzig selector) and minimization under an constraint are considered. The results of this paper improve the existing results in the literature by weakening the conditions and tightening the error bounds. The improvement on the conditions shows that signals with larger support can be recovered accurately. In particular, our results illustrate the relationship between minimization with an constraint and minimization with an constraint. This paper also establishes connections between restricted isometry property and the mutual incoherence property. Some results of Candes, Romberg, and Tao (2006), Candes and Tao (2007), and Donoho, Elad, and Temlyakov (2006) are extended.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recovery Analysis for Weighted ℓ1-Minimization Using a Null Space Property

We study the recovery of sparse signals from underdetermined linear measurements when a potentially erroneous support estimate is available. Our results are twofold. First, we derive necessary and sufficient conditions for signal recovery from compressively sampled measurements using weighted l1norm minimization. These conditions, which depend on the choice of weights as well as the size and ac...

متن کامل

Improved sparse recovery thresholds with two-step reweighted ℓ1 minimization

It is well known that l1 minimization can be used to recover sufficiently sparse unknown signals from compressed linear measurements. In fact, exact thresholds on the sparsity, as a function of the ratio between the system dimensions, so that with high probability almost all sparse signals can be recovered from iid Gaussian measurements, have been computed and are referred to as “weak threshold...

متن کامل

Analysis ℓ1-recovery with frames and Gaussian measurements

This paper provides novel results for the recovery of signals from undersampled measurements based on analysis `1-minimization, when the analysis operator is given by a frame. We both provide so-called uniform and nonuniform recovery guarantees for cosparse (analysissparse) signals using Gaussian random measurement matrices. The nonuniform result relies on a recovery condition via tangent cones...

متن کامل

Weighted ℓ1-Minimization for Generalized Non-Uniform Sparse Model

Model-based compressed sensing refers to compressed sensing with extra structure about the underlying sparse signal known a priori. Recent work has demonstrated that both for deterministic and probabilistic models imposed on the signal, this extra information can be successfully exploited to enhance recovery performance. In particular, weighted l1-minimization with suitable choice of weights ha...

متن کامل

Quasi-sparsest solutions for quantized compressed sensing by graduated-non-convexity based reweighted ℓ1 minimization

In this paper, we address the problem of sparse signal recovery from scalar quantized compressed sensing measurements, via optimization. To compensate for compression losses due to dimensionality reduction and quantization, we consider a cost function that is more sparsity-inducing than the commonly used `1-norm. Besides, we enforce a quantization consistency constraint that naturally handles t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/0805.0149  شماره 

صفحات  -

تاریخ انتشار 2008